Understanding Alien Plant Invasions

Alien plants are everywhere – but not all invaders behave the same

a group of yellow flowers
Photo by Brittany Lee on Unsplash

Alien plant invasions are accelerating worldwide, posing serious threats to biodiversity and costing billions in management. A recent study – led by David Gregory as part of his Masters at King’s and in collaboration with Matt White from the Victorian government – sheds light on how these invasions unfold across landscapes and why growth form matters when predicting and managing risk.

The research, conducted in Victoria, Australia, analysed data from more than 7,600 vegetation surveys spanning five decades. It found that 69 per cent of surveyed plots contained alien species, which made up 22 per cent of all recorded plant species. Forbs (broad-leaved herbs) were the most common invaders, followed by graminoids (grasses and similar) and woody plants. Yet the patterns of invasion were far from uniform.

Using boosted regression trees – a machine-learning approach well suited to ecological data – the team modelled how environmental, biotic and human factors influence both the presence and dominance of alien plants. Abiotic conditions, particularly temperature and rainfall, emerged as the strongest drivers overall, explaining up to 76 per cent of variation in invasion risk. Summer maximum temperature was a consistent predictor across all growth forms, with occupancy rising sharply above 23°C.

Human activity also played a major role. Areas with intensive land use, such as urban centres and agricultural zones, showed the highest levels of invasion. Alien forbs and graminoids were especially prevalent in these disturbed landscapes, often reaching more than 70 per cent cover in towns and cities. Alien woody plants were less widespread but still more likely to occur in urban areas than in intact forests.

Interestingly, the relationship between vegetation cover and invasion differed by growth form. Alien forbs and graminoids were more likely to occupy sites with high vegetation cover, but their proportional cover tended to decline as native vegetation increased – a sign of strong competition. Woody invaders, by contrast, were negatively associated with woody vegetation cover, suggesting that dense tree cover offers resistance to colonisation.

Spatial predictions confirmed these trends. Alien forbs had a high probability of occurring almost everywhere, even at higher elevations, though their cover remained low in alpine regions. Alien graminoids were largely confined to lowland areas dominated by human activity, while woody invaders were the most restricted, reflecting lower seed dispersal and availability and lower habitat suitability.

A global challenge


These findings resonate far beyond Australia. Invasive alien plants are among the top five drivers of biodiversity loss globally, according to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES).

They disrupt ecosystems, alter fire regimes and threaten food security. Economic costs are staggering – estimated at more than US$400 billion annually worldwide – and rising as trade and travel expand. Climate change compounds the problem by creating conditions that favour invaders, while land-use change accelerates their spread.

Understanding invasion dynamics at scale is therefore critical for global conservation strategies.

The implications for management are clear. Maintaining and restoring native vegetation is critical to limiting alien plant dominance, particularly after disturbances such as wildfire – a growing risk under climate change. Urban expansion and agricultural intensification will likely increase invasion pressure, making strategic land-use planning essential. Grouping species by growth form, as this study does, offers a practical way to prioritise control efforts without building hundreds of single-species models.

Alien plant invasions are complex, shaped by climate, land use and ecological interactions. But by recognising both shared drivers and growth-form-specific patterns, we can design more effective strategies to protect ecosystems. Growth-form-based models provide a tractable, widely understood tool for science and policy – a step towards smarter, landscape-scale management of one of the most pressing environmental challenges of our time.

Read more:

Gregory D, White M, Catford JA (2025) Similar drivers but distinct patterns of woody and herbaceous alien plant invasion. NeoBiota 103 31–52. https://doi.org/10.3897/neobiota.103.164914

Article originally posted on KCL’s Spheres of Knowledge

Beyond Triffids: Plants without Prejudice – collaboration with artist Léonie Hampton

We’re excited to welcome Léonie Hampton from the artist collective Still Moving to our group and department for a 6-month artist residency.

Together, we will develop a project exploring perceptions of human and plant “nativeness” to perceive ourselves in relation to biodiversity and climate crises. 

Activate from the series 'Beyond Triffids: Plants without Prejudice' 2023 by Léonie Hampton.

 Activate from the series ‘Beyond Triffids: Plants without Prejudice’ 2023 by Léonie Hampton.

Beyond Triffids: Plants without Prejudice

Invasive alien species are recognised as one of the greatest threats to global biodiversity, their invasion facilitated by, and compounding impacts of, climate change.  Within ecology and conservation biology there is a heated debate about whether alien plant invasions are good or bad for biodiversity. Do human-introduced alien species increase diversity and compensate for native species loss? Or are alien plants a major threat to biodiversity, warranting active management and restrictions on trade and travel?

Through the lens of alien plants we will particularly focus on perceptions of “nativeness” – both human and plant. Our interdisciplinary approach – co-created between arts, science and humanities – will challenge and interrogate understandings and value judgements, and how these values may need re-evaluation in light of biodiversity loss and migration.

Just as speculative fiction creates the potential, far off in space, where we might see ourselves more clearly, this creative collaboration will work with the perceptions and values of plants to perceive ourselves in relation to our urgent biodiversity and climate crisis.  


Our first public outreach event through this collaboration will be held at the Thelma Hulbert Gallery in Honiton on 4 March: Climate Conversations & Honiton Seed Swap. This will take place on the final day of Léonie’s exhibition “A Language of Seeds“.

The residency is funded by King’s Culture and supported by our ERC project AlienImpacts. More about this collaboration and five others supported by King’s Culture can be found here.

Sunshine and visitors

esti-luis-july-2017.jpeg
Esti, Luis and Alan make the most of the sunshine at New Forest NP

Long days, warm weather, dry roads and visitors. I love summer!

Esti Palma from the University of Melbourne and Dr Luis Mata from RMIT University (and, the all-important, Alan Mata) came to visit for a couple of weeks recently. They both gave excellent talks to our ecology group in Biological Sciences.

Luis spoke about “The Little Things That Run the City”, drawing on the pioneering work in Melbourne where Luis and other folk from RMIT are joining forces with Melbourne City Council to bring biodiversity into the city – and to make people aware of, and value, it. They’ve produced a beautiful children’s book as part of this work. I’m looking forward to seeing the other things that this innovative and productive group produce.

Esti focused on her invasive species traits work where she is using 80 plant species to test whether it is more informative to separate invasive species into different “types” based on their dimension of invasiveness, or whether it doesn’t matter if all species are lumped into one category. Early results seem to point to the former – but watch this space!

Esti also spoke briefly about her work that shows trait-based trends in the types of species that are being both lost from and gained in cities. As a bit of extra excitement, Esti’s paper featured on the cover of Ecography.  

john dwyer and bjorn robroek.jpeg
John and fellow Southamptonite, Bjorn Robroek, enjoying a cleansing ale after a walk along the River Itchen (we did talk ecology, promise!).

While talking about sunny visitors, it would be remiss of me not to mention Dr John Dwyer from the University of Queensland who stopped to say hello in June.

John also educated us with a talk, this time on how trait covariance can help us understand biodiversity trends along environmental gradients. Some really lovely work by John and Daniel Laughlin.

 

Project kick-off: propagule pressure, functional traits, resource availability and plant invasion

As mentioned in a previous post, I was lucky enough to be awarded one of the inaugural ARC Discovery Early Career Researcher Awards (DECRA) late last year. I officially started my DECRA research in April, so I thought it was time that I introduce it – albeit rather briefly.

In essence, I am planning to investigate the susceptibility of native vegetation edges to alien plant invasion using quantitative and experimental approaches.  The project will contain both theoretical and applied elements and will primarily examine plant invasion through a community ecology lens (or is it community assembly through an invasion lens??!).

I’ll specifically be looking at the combined (and interactive) effects of species traits, resource availability and propagule pressure on invasion success using Bayesian meta-analysis, causal modelling and a field experiment.  As stated in my grant application, “disentangling effects of alien species’ seed supply, high resource availability (light, water, nutrients) and species’ traits on invasion will indicate their relative influence on plant invasion and community assembly.  As a result, new knowledge will be gained on the efficacy of invasive species prevention and control by indicating which invasion pathways to target, and under what conditions.”

The project will run for three years and I’ll be splitting my time between Australia and the US to achieve it. The plan is to work with CEED/NERP folk on the more quantitative aspects of the project while in Australia (principally with people like Brendan Wintle, Cindy Hauser, Mick McCarthy and Peter Vesk in the QAEcology group at Melbourne Uni, but also with Phil Gibbons and David Lindenmayer at the Australian National University; more on that later). I’ll conduct the experiment at Cedar Creek Ecosystem Science Reserve in Minnesota working with David Tilman.  I’m planning to spend two months at the University of Minnesota this year (July-August) and then 6 months for the following two years (roughly April-Sept/Oct).  As a lover of warm weather, an endless summer comes as an added bonus!

New paper: The intermediate disturbance hypothesis and plant invasions: implications for species richness and management

Jan 2012 – Some colleagues and I have recently written a paper that examines the relationship between the intermediate disturbance hypothesis (IDH) and alien plant invasions.  Published in Perspectives in Plant Ecology, Evolution and Systematics, the paper is structured around two questions: in accordance with IDH, 1) at what disturbance frequencies is alien plant colonisation most likely and why, and 2) where along the disturbance continuum (at which successional stage) are alien plants likely to reduce community diversity and why?  We use understanding of community and invasion ecology to answer these questions, drawing on empirical evidence from a variety of terrestrial ecosystems.  We conclude the paper by discussing implications and strategies for managing plant communities and how patterns of invasion might change in the future.

You can find a summary of the paper on our lab website.

If you’d like a copy, please shoot me an email.