A field season at Cedar Creek!

In this post, AlienImpacts postdoc Josh Brian recounts some of his summer activities…

AlienImpacts

I have just returned from three months at Cedar Creek Ecosystem Science Reserve, an amazing field station run by the University of Minnesota. I was there to set up an experiment on the enemy release hypothesis, which states that alien species succeed because they are released from their native enemies (e.g. predators, parasites and pathogens) which limit them in their native ranges. Using sixteen different grassland species as our ‘invaders’, planted into two different community contexts and hand-treated with combinations of insecticide and fungicide, we will exploring the contexts (if any) under which enemy release facilitates invasion success.

When a photo opportunity presents itself in BigBio you are obliged to say yes!

The season was a busy one – everything adds up fast when you are trying to establish 288 plots, or hand-paint over 1500 seedlings with pesticide! But thanks to a great team of staff and interns at Cedar…

View original post 170 more words

Congratulations, Dr Fischer!

Sarah Fischer recently passed her PhD at the University of Melbourne. Her thesis was entitled “Promoting growth and regeneration of riparian trees in a degraded swamp”.

Part of the team of UniMelb, Parks Victoria and Zoos Victoria staff who built two weirs to block channelised sections of Macclesfield Creek and reengage and restore floodplain areas that support the critically endangered lowland Leadbeater’s Possum. From left: Genevieve Hehir, Fiona Ede, Sarah Fischer, Frederic Cherqui, Simon Dent, Rob James, Darcy Watchorn, Pete Poelsma. Photo by Joe Greet, 2020.

A member of UniMelb’s Waterway Ecosystem Research Group, Sarah worked at Yellingbo Nature Conservation Park in Victoria and was supervised by Joe Greet, Chris Walsh and me. Her work contributed towards our broader ARC Linkage project on “Overcoming multiple constraints to wetland forest restoration”, which we conducted in collaboration with Parks Victoria, Melbourne Water, Greening Australia and Zoos Victoria.

In an impressive effort, Sarah has already published all of her data chapters, a list of which is below.

Massive congratulations, Sarah, on completing this excellent body of research – and doing so under such trying circumstances. Fantastic work!

Sarah’s main PhD papers:

  • Fischer, S., Greet, J., Walsh, C. J. & Catford, J. A. (2021) Flood disturbance affects morphology and reproduction of woody riparian plants. Scientific Reports, 11, 16477. link (open access)
  • Fischer, S., Greet, J., Walsh, C. J. & Catford, J. A. (2021) Restored river-floodplain connectivity promotes woody plant establishment. Forest Ecology and Management, 493, 119264.link pdf
  • Fischer, S., Greet, J., Walsh, C. J., Catford, J. A. & Arndt, S. K. (2022) Riparian trees resprout regardless of timing and severity of disturbance by coppicing. Forest Ecology and Management, 507, 119988. link author accepted version

Plus two related ones:

  • Greet, J., Fischer, S. & Russell, K. (2020) Longer duration flooding reduces the growth and sexual reproductive efforts of a keystone wetland tree species. Wetlands Ecology and Management, 28, 655-666. link
  • Greet, J., Fischer, S., Walsh, C. J., Sammonds, M. J. & Catford, J. A. (2022) Restored river-floodplain connectivity promotes riparian tree maintenance and recruitment. Forest Ecology and Management, 506, 119952.  link (open access) pdf

Spring *lab* retreat

L to R: Josh Brian, Luis Moliner Cachazo, María Ángeles Pérez-Navarro, Junru Shen, Angela Bartlett, Harry Shepherd and Billy Catford, the lab lab.

Some pics from our recent lab retreat in Wiltshire – complete with research planning, writing, workshopping, communal cooking, a (tiny) blizzard, a birthday and lots of fetch! A fabulous way to spend a few days.

Addressing context dependence in ecology

A phrase that you are bound to hear many times at any ecology conference is “it depends”. We see context dependence – variation in the magnitude or sign of ecological relationships depending on the conditions under which they are observed (Fig. 1) – in just about every study and every system. Such variation, especially when unexplained, can lead to spurious or seemingly contradictory conclusions across studies, which can limit understanding and our ability to transfer findings across studies, space, and time. Because of the wide prevalence of observed context dependence and the critical need to tackle it, a group of us recently knocked heads (and read lots of fabulous papers!) about how it can be addressed. Our reading, thinking, talking, drawing and writing culminated in this open access paper in TREE

Figure 1: Context dependence may be invoked when the observed relationship between two variables varies in (a) magnitude (strength), (b) sign (direction), and (c) uncertainty, applied here to hypothetical examples from plant invasions.

In the paper, we identify two types of context dependence resulting from four sources (Fig. 2). Mechanistic context dependence occurs when a relationship, say between variables X and Y, fundamentally differs under different ecological and spatiotemporal conditions. Such relationships arise from (i) interaction effects of another variable, Z, which modifies the effect of X on Y, reflecting ecological processes. Apparent context dependence occurs when the relationship between variables X and Y does not differ but appears to due to: (ii) the presence of confounding factors that are either unaccounted for or are measured and accounted for in some studies but not others; (iii) problems of statistical inference where studies differ in sampling accuracy and precision, statistical power, or interpretation of statistical measures; and (iv) methodological differences among studies whereby studies observe and measure variables or relationships in different ways.

Figure 2: Four sources of variation in the relationship between independent variable X and dependent variable Y, with illustrative examples and actions that can reduce unexplained variation and the likelihood of apparent context dependence.

We illustrate our typology using examples from biological invasions, a field where context dependence is prominent and widely discussed, but we propose that the typology is applicable across all areas of ecology (and it may well extend to all natural and biological sciences…). We conclude the paper by outlining steps for addressing the different types and sources of context dependence, and provide a decision tree that outlines key actions likely to be helpful. We believe that by recognising the different ways in which context dependence can arise, we can better account for context dependence and reduce the prevalence of unexplained variation in ecology.

Full paper: Catford, J.A., Wilson, J.R.U., Pyšek, P., Hulme, P.E. & Duncan, R.P. (in press) Addressing context dependence in ecology. Trends in Ecology & Evolutionlink (open access)

Welcome Josh and María Ángeles!

October has been an exciting month as we welcome Josh Brian and María Ángeles Pérez-Navarro to our lab group – and Junru Shen to London after she’s been doing her PhD remotely for a year!

María Ángeles has a PhD in Terrestrial Ecology (CREAF-UAB, 2020), and her research is mainly focused on understanding and predicting species distribution changes with global change. During her previous research at CREAF as a post-doctoral researcher, she investigated the impact of canopy-recruit interactions on climatic debt and analysed the differences in performance of planted and natural tree forest species. During her PhD, she analysed the relationship between species niche and population and communities responses to extreme climatic events, trying to disentangle some of the impacts of climatic variability driven by climate change on plant ecosystems.

Josh has recently completed his PhD at the University of Cambridge, studying the community ecology of freshwater mussel parasites and the implications for the conservation of their hosts. Prior to that, he worked on the diversity and ecology of the symbionts of coral reefs in Timor-Leste. He is interested generally in community ecology, symbiosis and invasion biology.

María Ángeles and Josh will both be working on our AlienImpacts project. We’re delighted to have them in the group and are really excited about the fun science that is now in store!

Senior Editor role at Journal of Ecology

I’m really excited to be joining the Senior Editor team at Journal of Ecology this month!

I absolutely love the journal (and the British Ecological Society more generally), so am delighted to have the opportunity to contribute to the journal, our science and our wonderful community of plant ecologists in this way.

Journal of Ecology is very excited to announce that Jane Catford will be joining our Senior Editor team! Jane has been an Associate Editor with our journal since 2016 and we’re thrilled to see her take on this new role.

Here we interview Jane about her current research, favourite plant species, ideal fictional lab partner & dream superpower!

Predicting impacts of alien plant invasions on community diversity

In some very un-2020-like news (?!), I found out in December that my grant proposal to the European Research Council was successful. The words “ecstatic”, “ridiculously excited”, “over the moon” don’t begin to cover it. Safe to say, I didn’t sleep for several days after hearing the news.

My project, Predicting impacts of alien plant invasions on community diversity (AlienImpacts), aims to develop an approach for accurately predicting impacts of alien plants on floristic diversity, and to identify the circumstances under which negative impacts will occur, using temperate grasslands as a model system. The project combines experimental, observational, theoretical and quantitative approaches, and will enable us to undertake some incredibly exciting and important research.

Funded through the ERC Consolidator Grant scheme, the project will run for five years, officially kicking off in April 2021, and will support a team of researchers – including four postdocs (the ads of which will come out soon, so please watch this space!).

I’m incredibly grateful to the ERC for supporting this important work, to friends, colleagues and 2019 reviewers* who helped me hone the proposal, and to collaborators who will be involved in the research.

Project summary: The Anthropocene, the current geological epoch, is characterised by human-induced ecological changes, which have prompted a global biodiversity crisis. Human-introduced alien plants could help to offset native species loss, augmenting diversity and maintaining the services and capital that humans derive from nature. However, alien species that become invasive are themselves a key threat to biodiversity. Alien species thus presents a huge challenge for biodiversity conservation in the Anthropocene: should their arrival and establishment be inhibited or disregarded as they can potentially both exacerbate and ameliorate biodiversity loss? Coupling empirical and theoretical approaches, AlienImpacts will directly address this challenge by developing an approach for accurately predicting impacts of alien plant invasions on plant community diversity and identifying the circumstances under which negative impacts will occur. Using temperate grasslands as a model system, AlienImpacts will use innovative field experiments and global observations to systematically quantify – for the first time – how often, for how long, to what extent, under what conditions and in what ways alien plants can impact plant community diversity. AlienImpacts will develop mechanistic niche models, validated with empirical data from grasslands in North America, Europe and Australia, that will enable realistic scenarios of invasion biodiversity impacts to be forecast, now and in the future. Developing empirically accurate mechanistic models that predict invasions and their biodiversity impact is a highly ambitious goal. Its achievement will mark a step-change in ecological theory and understanding, will inform environmental policy and management, and address a critical research challenge of the Anthropocene: how to conserve the biodiversity of plants – the dominant life form on earth – under global environmental change.

[*2020 was my second attempt after falling short in 2019. Reviewer and panel comments from 2019 were incredibly helpful, and enabled me to strengthen my 2020 proposal –> so I owe them many thanks for their excellent feedback – thank you!]

Community diversity outweighs effect of warming on plant colonization

Abiotic environmental change, local species extinctions and colonization of new species often co‐occur. Using a unique grassland experiment that isolates abiotic effects of warming from indirect biotic effects, we find that the biomass, richness and traits of plant colonists is more strongly affected by biotic resistance from residents than 6 years of 3°C‐above‐ambient temperatures. If these results were extended to invasive species management, preserving community diversity should help limit plant invasion, even under climate warming.

Full paper: Catford, J. A., J. M. Dwyer, E. Palma, J. M. Cowles, and D. Tilman. 2020. Community diversity outweighs effect of warming on plant colonization. Global Change Biology. link accepted author version

The incredible Okavango

Edge of the flood waters – teaming with activity! See if you can spot the warthogs & impala

Perched in the middle of the southern part of the African continent is the Okavango Delta – an inspiring mosaic of wet and dry, with an abundance of wildlife, breathtaking landscapes, and grasses that would blow your socks off (and probably get attached to them given half a chance).

Last month, I was one of 24 lucky souls to spend about 10 days submersed in the Delta – a UNESCO World Heritage Site and Ramsar wetland that is formed when the Okavango River, flowing from Angola and Namibia, reaches a tectonic trough in Botswana where is it spills over the land to form a 15,000 sq km delta.

King’s Geography, in collaboration with the University of New South Wales and Arizona State University via PLuS Alliance, run a river basin management field course there, which is expertly led by Richard Kingsford from UNSW.

We had staff and students from all three universities plus the University of Botswana, so it was a wonderful melting pot of experience, expertise, backgrounds and interests – all set against the backdrop of this amazing system and river basin.

It was an unusually a dry year, but that didn’t detract from the place. The many, many highlights included:

  • elephants regularly wandering through our camp (run by aptly-named Elephants Without Borders),
  • watching hyenas and vultures feast on a dead elephant,
  • measuring water quality in floodwaters that were rolling down the system (unnervingly close to crocodiles and hippos…),
  • some mighty magnificent grasses,
  • trotting warthogs and graceful impala, and
  • the company of the students and staff on the trip.
Students and staff (minus photographer, Claire) from UB, UNSW, ASU and KCL.

Invasive Species Week: UK Invasions in a Changing Climate

Regan Early (University of Exeter) and I wrote this piece to mark Invasive Species Week for the British Ecological Society blog. In it, we discuss the possible synergies between climate change and species invasions, and some associated policy challenges.

 Vandan Patel

Whether it is parakeets streaking across the sky, grey squirrels pirouetting in your local park, or seed pods of Himalayan balsam going pop, alien species are familiar sights and sounds in the UK.

Last week’s release of the IPBES report and this week’s Invasive Species Week remind us of the serious threat posed by alien species that become invasive. Not only do they impact the economy – costing the UK some £1.8 billion each year, threaten human health and degrade cultural values, but they are the fifth biggest threat to biodiversity globally.

Together with the BES policy team, we recently responded to Parliament’s Invasive Species inquiry.

Among the questions the Inquiry posed was whether climate change would exacerbate invasions. Would the two interact to make a problem bigger than the sum of its parts?

Increasing number of invaders under climate change 

Somewhat surprisingly, the way that climate change will affect UK invasion is yet to be comprehensively assessed. Evidence suggests it’s unlikely that numbers of invasive species will increase simply because the UK climate will become suitable for species that otherwise couldn’t live here. Rather, more invaders may arrive in the UK because their populations grow in mainland Europe, and through human responses to climate change1.

If climate change makes invaders more abundant in continental Europe, the number of emigrants will increase, driving up immigration into the UK2. For example, numbers of moths migrating each year to the southern UK (but not establishing populations) has increased by 1.3 species/year, associated with warming temperatures in Spain and France3, but there is no direct evidence that climate change is the cause.

Greater use of biofuels, more intensive agriculture, and introduction of new plant species (or plant varieties) for gardens and agriculture may help us mitigate or adapt to climate change, but may inadvertently facilitate invasion4,5. New varieties of pasture plants that grow quickly and can cope with varying weather conditions are being developed; unfortunately, these are among the traits that can make species invasive6. Seaweeds are increasingly being used for biofuel production7 – many of them alien – and tests into seaweed farms are now underway across the UK. This developing aquaculture industry may pose a future invasion risk.

 Shane Stagner

Increasing impact of invaders under climate change 

Climate change will likely increase the impacts of invaders in the UK because many invaders are opportunistic generalists with wide environmental tolerances, good dispersal ability and rapid growth rates1. These characteristics mean that they’re well placed to take advantage of environmental change and of increases in disturbances like floods and storms8. Additionally, as climate change makes life tougher for natives, they will be less able to repel the advances of invaders9,10. For example, a decline in perennial native grasses with increasing temperatures has facilitated exotic annual grass invasion in California11. Under a new climate, currently successful management may become less effective, allowing invaders to proliferate and spread4,12.

The policy challenge of range-shifting species 

No matter how hard we try, a degree of climate change is inevitable, and this will drive shifts in species’ ranges and abundances13. Such range-shifting species are not being introduced directly by people, and so don’t fit into the traditional invasive species paradigm. In areas strongly affected by environmental change, species’ range shifts are likely essential for their survival, so could species native to mainland Europe that colonise the UK merit protection here? Species colonising from nearby locations are less likely to be invasive, and indeed no European native that has thus far colonised the UK is considered invasive14. On the other hand, anecdotal evidence raises concerns. St Piran’s hermit crab colonised Cornwall from Europe in 2016, and has reached extraordinarily high numbers on one beach, with no native hermit crabs to be found. Distinguishing desirable range shifts of climate-adapting “environmental refugees” from undesirable species invasions remains a key challenge.

To our knowledge, policy makers are not yet examining this issue and we predict that European native species colonising the UK will cause conflict in conservation goals. This seems like a key challenge that the invasion and conservation science communities – among others – need to resolve. Exciting times ahead!

 Shane Young

References

  1. Catford, J. A. & Jones, L. P. (2019) “Grassland invasion in a changing climate” in Grasslands and Climate Change (eds D.J. Gibson & J. Newman). Cambridge University Press, p. 149-171.
  2. Lockwood, J. L., Cassey, P. & Blackburn, T. M. (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15, 904-910.
  3. Sparks, H. T., Dennis, L. H. R., Croxton, J. P. & Cade, M. (2007) Increased migration of Lepidoptera linked to climate change. European Journal of Entomology 104, 139-143.
  4. Bradley, B. A. et al. (2012) Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment 10, 20-28.
  5. Haeuser, E., Dawson, W. & van Kleunen, M. (2017) The effects of climate warming and disturbance on the colonization potential of ornamental alien plant species. Journal of Ecology.
  6. Driscoll, D. A. et al. (2014) New pasture plants intensify invasive species risk. Proceedings of the National Academy of Sciences  111, 16622–16627.
  7. Czyrnek-Delêtre, M. M., Rocca, S., Agostini, A., Giuntoli, J. & Murphy, J. D. (2017) Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates. Applied Energy196, 34-50.
  8. Diez, J. M. et al. (2012) Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and the Environment 10, 249-257.
  9. Kraft, N. J. B. et al. (2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29, 592-599.
  10.  Catford, J. A., Downes, B. J., Gippel, C. J. & Vesk, P. A. (2011) Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. Journal of Applied Ecology 48, 432-442.
  11.  Bansal, S. & Sheley, R. L. (2016) Annual grass invasion in sagebrush steppe: the relative importance of climate, soil properties and biotic interactions. Oecologia 181, 543-557.
  12.  Hellmann, J. J., Byers, J. E., Bierwagen, B. G. & Dukes, J. S. (2008) Five potential consequences of climate change for invasive species. Conservation Biology 22, 534-543.
  13.  Inderjit, Catford, J. A., Kalisz, S., Simberloff, D. & Wardle, D. A. (2017) A framework for understanding human-driven vegetation change. Oikos 126, 1687-1698.
  14.  Fridley, J. D. & Sax, D. F. (2014) The imbalance of nature: revisiting a Darwinian framework for invasion biology. Global Ecology and Biogeography 23, 1157-1166.
%d bloggers like this: