
Trends in

TREE 2914 No. of Pages 13
Ecology & Evolution OPEN ACCESS
Review
Addressing context dependence in ecology
Jane A. Catford ,1,2,9,@,* John R.U. Wilson ,3,4 Petr Pyšek ,5,6 Philip E. Hulme ,7 and
Richard P. Duncan 8,@
Highlights
‘Context dependence’ is widely used to
describe disparate results in ecology,
but the term is poorly defined and incon-
sistently used.

Context dependence arises when
ecological relationships vary in magni-
tude or sign, depending on the condi-
tions under which they are observed.

Context dependence can result from
multiple factors and processes, so,
Context dependence is widely invoked to explain disparate results in ecology. It
arises when the magnitude or sign of a relationship varies due to the conditions
under which it is observed. Such variation, especially when unexplained, can lead
to spurious or seemingly contradictory conclusions, which can limit understanding
and our ability to transfer findings across studies, space, and time. Using examples
from biological invasions, we identify two types of context dependence resulting
from four sources: mechanistic context dependence arises from interaction effects;
and apparent context dependence can arise from the presence of confounding
factors, problems of statistical inference, and methodological differences among
studies. Addressing context dependence is a critical challenge in ecology, essential
for increased understanding and prediction.
unless the underlying causes are
identified, concluding that relationships
are context dependent provides limited
understanding.

We distinguish between apparent and
mechanistic context dependence, with
the former an artefact of study design
and approach and the latter reflecting
ecological interaction effects.

Recognising and addressing the different
sources of context dependence should
facilitate increased understanding, pre-
diction, and generalisation in ecology.
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The prevalence and problem of context dependence
Ecological studies examining the same question or process often reach different conclusions. In
invasion ecology, for example, studies have found that the phylogenetic relatedness of alien to
native species can inhibit or facilitate invasion [1,2], the relationship between native and alien
species richness can vary from positive to negative [3,4], and the effect of disturbance on invasion
is equivocal and inconsistent [5,6]. When studies addressing the same question reach different
conclusions, the different outcomes are often attributed to context dependence (see Glossary).
Context dependence, or contingency, refers to situations where relationships vary depending on
the conditions – the context – under which they are observed (Figure 1) [7–10]. It includes situations
where the magnitude (strength) or sign (direction) of a relationship differs under different biotic,
abiotic, spatiotemporal, or observational circumstances (Figure 1 and Box 1).

Context dependence is commonly and increasingly invoked in ecology (Appendix S1, Figure S1,
and Table S1 in the supplemental information online) [11–17], as well as in other fields typified by
high complexity, large scales, and heavy reliance on observational studies, such as conservation
biology [18,19], evolutionary biology [20,21], and epidemiology [22,23]. Context dependence
provides a convenient shorthand to describe variation within and between (potentially myriad)
studies and is reported across all study types [24–28]. However, because context dependence
can result from many processes (as discussed below), unless the underlying causes are identi-
fied, concluding that outcomes are context dependent provides little insight by itself. Further-
more, because ‘context dependence’ is often used to describe disparate findings, widespread
use of the term could suggest that there are few general principles in ecology, that ecological
relationships are largely unpredictable, and that ecological phenomena can only be understood
on a case-by-case basis [29,30]. Here we argue that researchers can gain greater insight into
ecological processes if they recognise the different sources of context dependence and account
for them in the design, interpretation, and communication of their studies.

We define context dependence and propose a novel typology based on two types and four
sources of context dependence (Figure 2). We illustrate our typology using examples from
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biological invasions, a field where context dependence is prominent and widely discussed (Box 1,
Figure S2 and Table S2), but we propose that the typology is applicable across all areas of ecol-
ogy. We outline steps for addressing the different types and sources of context dependence
(Figure 3). By understanding ways in which context dependence can arise, ecologists should
be better placed to distinguish fundamental (mechanistic) from apparent context dependence,
increasing predictive understanding in ecology.

A typology of context dependence
We identify two types of context dependence resulting from four sources (Figure 2 and Table S3).
Mechanistic context dependence occurs when a relationship, say between variablesX andY,
fundamentally differs under different ecological and spatiotemporal conditions. Such relation-
ships arise from (i) interaction effects of another variable, Z, which modifies the effect of X on
Y, reflecting ecological processes. Apparent context dependence occurs when the relationship
between variables X and Y does not differ but appears to due to: (ii) the presence of confounding
factors that are either unaccounted for or are measured and accounted for in some studies but
not others; (iii) problems of statistical inference where studies differ in sampling accuracy and
precision, statistical power, or interpretation of statistical measures; and (iv) methodological
differences among studies whereby studies observe and measure variables or relationships in
different ways. The four sources of context dependence can co-occur and manifest in various
ways (Figure 1). When individual studies use consistent methods, accurate approaches, and com-
parable study designs, within-study variation should be driven largely by interacting or confounding
factors, whereas variation among studies can also reflect issues related to statistical inference or
differences in study methodology.

Type: mechanistic; source: (i) interaction effects
‘Interaction effects’ (or interaction modifications [31] or effect modifications [22]) refers to higher-order
interactions between three or more factors (X, Y, and Z). Interaction effects can result in relationships
between X and Y being magnified, reduced, or reversed as Z values vary [11,32]. In Australia, for
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Figure 1. Context dependence may be invoked when the observed relationship between two variables varies in (A) magnitude (strength), (B) sign
(direction), and (C) uncertainty, applied here to hypothetical examples from plant invasions. However, there is only evidence of real (mechanistic) context
dependence in (A) and (B) and not in (C) [or (D)], because relationships in (C) do not vary in magnitude or sign, just statistical significance, as represented by
hypothetical P values; (C) shows an example that could lead to apparent context dependence between Sites 1 and 2 if there are issues with statistical inference (see
Figure 2 and main text). (D) Both cases show the same relationship (no context dependence). Forms of context dependence are not mutually exclusive and can co-
occur. In this illustrative schematic, the independent variable X is resource availability, and the dependent Y variable is the probability of invasion: (A) magnitude of
relationship depends on propagule pressure (context = propagule pressure); (B) sign of relationship depends on invader traits (high or low specific leaf area, SLA)
(context = invader SLA); (C) slopes of relationships in Sites 1 and 2 are identical, but differences in uncertainty and statistical power mean that the relationship could be
viewed as statistically significant in Site 1 (P = 0.01) but not Site 2 (P = 0.1), such that the relationship could be misinterpreted as being context dependent (context = site).
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Glossary
Apparent context dependence:
relationships or outcomes appear to
vary under different conditions, but
variation is driven by issues related to
confounding factors, statistical
inference, and methodological
differences that cause variation in the
appearance of a relationship, not
variation in the underlying causal
relationship.
Confounding factors: confounding
occurs when differences in Y associated
with changes in X cannot be separated
from other factors (C), that is, X and C
are confounded such that C might
simultaneously affect Y, obscuring the
underlying X–Y relationship; also called
‘confounding variables’, ‘confounding
features’ or ‘confounders’; a source of
apparent context dependence.
Context dependence: variation in the
sign or magnitude of an ecological
relationship depending on the conditions
under which the relationship occurs or is
observed; also known as ‘contingency.’
Design analysis: a set of statistical
calculations about possible study
outcomes generated through
hypothetical replications of a study that
modify, for example, sample size,
uncertainty, effect sizes, factors, and
variables included in a study; can be
used to calculate Type M and Type S
error rates; can be prospective or
retrospective; related to but broader
than statistical power analysis.
Gradient experiments: multilevel
experiments that lack replicates but
instead span a wider gradient of
environmental conditions (X axes) by
maximising the diversity of conditions
examined.
Interaction effects: interacting factors
or variables (Z) modulate the X–Y
relationship because the effect of X on
outcome Y depends on the value of Z;
also called ‘interaction modifications’ or
‘interactions’ in statistics; can be called
‘higher-order interactions’ in ecology;
source of mechanistic context
dependence where Z is the context in
which the X–Y relationship varies.
Invasive: refers to alien (non-native,
exotic) species introduced by humans
outside of their natural biogeographic
ranges with populations that spread
over a wide range, reach high
abundance, and often cause negative
impacts.
Mechanistic context dependence:
fundamental variation in a causal
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example, the relationship between invasive fox (Vulpes vulpes) abundance and impact on native
animals depends on the local abundance of dingoes (Canis familiaris), the apex predator, because
dingoes supress fox activity [33,34]. Interaction effects such as these can extend beyond two-way
interactions and involve multiple interacting factors [19,22,35].

Context dependence arising from interaction effects reflects underlying causal relationships and
should thus be consistent with, or can inform, theory (Box 2) [10]. For example, in a grassland
experiment, the relationship between abundance of invading plant species and community diver-
sity was consistent with theories of plant resource economics and competition [36,37]: invaders
with resource-acquisitive strategies were more abundant in low-diversity communities, whereas
the opposite was true in high-diversity communities [24]. Observed fine-scale variation in occu-
pancy of giant bamboo (Phyllostachys bambusoides) in Japan corresponds with the stress gra-
dient hypothesis [38] and reflects bamboo ecology and ecophysiology (see Figure IA in Box 1)
[26]. And the fox–dingo example noted above is consistent with the mesopredator release hy-
pothesis [39]. If important interaction effects are overlooked, observed relationships can appear
uncertain within studies and can differ among studies.

Type: apparent; source: (ii) confounding factors
Confounding occurs when two ormore independent variables, X and C, are correlated such that their
effects on dependent variable Y cannot be disentangled [40,41]. Confounders can be
considered ‘nuisance’ variables and can generate apparent context dependence because,
unless their effects are eliminated or taken into account, they can exaggerate, suppress, reverse, or
alter the manifestation of the X–Y relationship [18,22,41,42], especially when the relationship is
weak [43]. For example, an apparent negative relationship between bullfrog (Rana catesbeiana) inva-
sion and native frog species richness in eastern China disappears once the confounding effect of frog
hunting by humans is considered (see Figure IB in Box 1) [44]. Similarly, without accounting for con-
founding variables, buckthorn (Rhamnus cathartica) invasion can appear to increase soil pH and leaf
litter calcium flux in US forests [45]. Confounding can be especially problematic in observational stud-
ies (where independent variables and unidentified legacy effects can be less readily controlled than in
experiments), in studies spanning a wide range of conditions, and in meta-syntheses (because con-
founding can affect findings at the synthesis level aswell as findings of component studies) [18,22,41].

Type: apparent; source: (iii) statistical inference
Apparent context dependence can arise when studies estimating an X–Y relationship reach the
wrong conclusion becausemeasurements of X and Y are noisy, the effect of X on Y is weak, multiple
comparisons are made and sample sizes are small, or statistical results are interpreted incorrectly
[46–48]. Indeed, if studies rely on binary notions of statistical significance to judge the presence,
magnitude, and sign of relationships, then, when statistical power is low – as is often the case in
ecology [49] – studies will often find ‘statistically significant’ results that exaggerate the effect of X
on Y or conclude that it goes in the wrong direction [46]. Such errors in the estimated magnitude
or sign of relationships (Type M error and Type S error, respectively [46]) can be stochastic,
leading to different studies reaching different conclusionsmostly by chance alone [49]. The practice
of categorising effects as significant or non-significant using P values or confidence intervals can
also lead to apparent context dependence due to differences in the statistical power of studies
[48,50]. This is compounded by errors in interpretation and questionable research practices,
which are common in ecology and related fields [51,52]. For example, Fidler et al. [52] found that
63% of 67 conservation biology papers that used null hypothesis significance testing
misinterpreted statistical non-significance as evidence for no effect, and Fraser et al. [51] found
that 37% of 494 ecologists reported collecting more data after checking whether results were sta-
tistically significant.
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relationship under different biotic,
abiotic, and spatiotemporal conditions,
which stems from interaction effects,
such that the X–Y relationship depends
on other (interacting) variable(s) (Z).
Methodological differences: refers to
situations where studies observe and
measure variables or relationships in
different ways that are not directly com-
parable; a source of apparent context
dependence.
Statistical inference: process of
drawing conclusions about an
underlying population based on a sam-
ple or subset of data from that popula-
tion; in our typology, we use ‘statistical
inference’ to also refer to the process of
estimation (i.e., sampling of the data
subset used in analysis); a source of
apparent context dependence.
Statistical power: probability of finding
an effect or relationship when one is
present; a function of significance
threshold, sample size, and effect size.
Type I error: rejection of a true null
hypothesis (a false positive).
Type II error: failure to reject a false null
hypothesis (a false negative).
TypeM error: error in the magnitude of
an estimated effect; also known as
‘exaggeration ratio.’
Type S error: error in the sign of an
estimated effect.
X: independent (explanatory, predictor,
causal) variable.
X–Y relationship: relationship between
variable X and variable Y; X sometimes
considered to causally affect Y.
Y: dependent (response, outcome)
variable.
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Inaccurate estimates of X or Y can cause systematic bias in data, distorting estimated X–Y rela-
tionships. For example, observers with little experiencemay not detect or maymisidentify species
[22,53]. McClintock et al. [54] showed that even very low rates of false positive errors (1% of total
records) can severely distort species occupancy predictions, over- or under-estimating distribu-
tions, and result in spurious X–Y relationships. Imprecise estimates cause random measurement
error, increasing noise and uncertainty and decreasing statistical power. Unlike systematic bias,
which has to be addressed during the observation process [55], effects of randommeasurement
error can be mitigated by increasing sample size [22]. For example, in a search experiment for
invasive orange hawkweed (Hieracium aurantiacum), Moore et al. [56] showed that detection
probability for an average observer increased with increasing search effort.

Type: apparent; source: (iv) methodological differences
Apparent context dependence in the X–Y relationship can also arise if studies or models that are
directly compared differ in methodological approach. This is distinct from the other sources of ap-
parent context dependence because the X–Y relationship in the component studies could be es-
timated both accurately and precisely; rather, it is the way in which the studies have been
compared that is inappropriate. Methodological differences, as defined in this paper, can arise be-
cause of differences in: study indicators, metrics, and scales; the values and heterogeneity of ex-
planatory variables (i.e., the X-gradient examined); and research approaches and practices.

The X–Y relationship could vary if studies measure X or Y in different ways [57–59]. For example,
invader occupancy and invader abundance can both indicate invasion level, but factors related to
these two metrics can differ [60], meaning studies that use these different indicators of invasion
level could reach different conclusions [61]. Composite indicators or classification-based indices
may be particularly troublesome as the underlying metrics or criteria may be unclear and metrics
may inadvertently be conflated [25,62]. For example, definitions of species invasiveness vary
such that two studies, both examining traits related to species invasiveness, could inadvertently ex-
amine different dimensions of invasiveness (e.g., local abundance, spread rate, or habitat breadth)
[25]. Studies could consequently reach different conclusions about traits linked to species invasive-
ness solely because of differences in the underlying Y variable (see Figure IC in Box 1) [61]. Similar
problems could arisewith indices representing – amongmany – diversity [63], resilience and stability
[64], and ecosystem services [65], each of which can be calculated in numerous ways.

Even if the same metrics are used, studies may not be comparable if they were conducted at dif-
ferent levels or extents of X, or at different scales (both grain and extent, sensu [66]). For example,
factors found to influence invasion at an early stage may not predict success at a later stage
[67,68], as shown by Junaedi et al. [69], who found that invader seed mass, specific leaf area,
and residence time were related to the naturalisation, but not spread, of alien plant species in
tropical forests of Indonesia. Similarly, conclusions about the X–Y relationship can differ if the re-
lationship is nonlinear and studies consider a different range of X values. For instance, a study that
included only sites with low Pinus nigra biomass would find a positive relationship with grassland
species richness in New Zealand, whereas a study with only high biomass sites would find a neg-
ative relationship (see Figure ID in Box 1) [70,71]. Because different processes can operate at dif-
ferent scales [72], relationships evident at fine scales can be lost at broad scales [73],
relationships can shift from linear to non-linear [74], and slopes can change direction [3]. Such
scale dependence can distort findings of meta-syntheses when component studies have been
conducted at different scales, as is often the case [14].

Apparent context dependence can also stem from differences in research approaches and study
systems (e.g., observer differences; whether a study is conducted in a laboratory or greenhouse,
4 Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx
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Box 1. Context dependence in biological invasions

The context of biological invasions matters: it can determine whether, when, and where invaders fail or succeed; which systems are resistant or vulnerable to invasions;
the impacts that invaders cause; and the approaches through which they can be managed. Despite robust understanding of the key drivers of invasion [103,104],
empirical studies of plant invasion commonly find substantial variation in relationships where the magnitude, sign, and uncertainty of relationships varies both within
and between studies (Appendix S1, Figures S1 and S2, and Tables S1 and S2). Context dependence may be especially prevalent in invasion ecology because of
the diversity of contexts encountered, including ecoevolutionary characteristics of recipient ecosystems, introduction histories and the role of humans, invader traits,
applied and fundamental research questions, and observational measures [60,67,117]. These contexts can modulate, or appear to modulate, the relationship between
primary drivers of invasion (e.g., propagule pressure, time since invasion, disturbance) and outcomes of invasion (e.g., invader occupancy, abundance, impact and re-
sponse to management; Figure I). Because it is an applied discipline, there is a particularly pressing need to understand and overcome context dependence in invasion
ecology: to predict future invasion and assess likely management efficacy, we need to be able to transfer results across studies, species, and regions; unless properly
addressed, context dependence can inhibit such transferability.
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Figure I. Examples of different sources of context dependence in biological invasions. (A) Giant bamboo, Phyllostachys bambusoides, which is invasive in
Japan, shows a positive relationship with canopy cover in cold regions but a negative relationship in warm regions, owing to interaction effects of light and
temperature on bamboo occupancy (example of interaction effects) [26]. (B) Invasion success of bullfrogs, Rana catesbeiana, is negatively related to native frog
species richness in eastern China, but this relationship disappears when the confounding effect of frog hunting is accounted for in a logistic regression model (con-
founding factors) [44]. (C) Across 236 alien herbs in southeastern Australia, the relationship between species seed mass and spread rate depends on whether
seeds are smooth or hooked (upper panel) (interaction effects), but a different relationship is obtained if abundance, not spread rate, is used as a measure of spe-
cies invasiveness (lower panel) (methodological differences) [61]. (D) Aboveground biomass of invasive Pinus nigra in New Zealand has a unimodal relationship with
plant species richness (methodological differences) [70] (image redrawn from [71]). Photo credits: (A) Marco Schmidt, CC BY-SA 3.0, via Wikimedia Commons; (B)
Ren-Jay Wang; and (D) Sarah Wyse.
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using field experiments or observations) [10,53,75]. For example, the apparent paradox between
native plant richness and alien plant richness –where a negative relationship tends to be observed
in experiments and a positive relationship in observational studies [76] (but see [77]) – has been
attributed (though not exclusively [78]) to lower environmental heterogeneity (and niche diversity)
at small scales, which typify experiments, versus the higher heterogeneity at larger scales typical
of observational studies [3]. While this explanation for observed variation in the relationship
has wide support, a recent meta-analysis showed that ~70% of variation across 161 native–alien
richness relationships could be attributed to article- and author-specific differences, suggesting
the relationship observed depends strongly on author choices about study system and approach
[4], including study grain size [78]. Many between-study differences can stem from issues related to
interaction effects, confounding factors, and statistical inference (Figure 2) but – unless those
sources of variation can be accounted for – they may be considered methodological differences.
Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx 5
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Figure 2. Four sources of variation in the relationship between independent variable X and dependent variable Y, with illustrative examples and actions
that can reduce unexplained variation and the likelihood of apparent context dependence. Methodological differences (iv) are the easiest to address and
confounding factors (ii) are arguably the hardest, because it is likely that multiple factors will affect ecological outcomes, not all of which can be accounted for. Once
interacting factors are identified, variation from interaction effects (i) should be predictable. Variation can be the result of biological/ecological mechanisms (i) or study
design and practice (ii–iv). The sources of variation are not mutually exclusive and are often interrelated and can manifest in various ways (Figure 1). White boxes show
examples only; many other scenarios could occur, for example, different metrics for source (iv). "Relationship" sometimes abbreviated to "r'ship". See also Table S3.
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The way forward: getting on top of context dependence
It is inevitable that relationships will vary across space and time and across species, systems and
studies. To identify interaction effects that underlie mechanistic context dependence, we need to
distinguish fundamental (mechanistic) from apparent variation in the X–Y relationship (Figure 3).

Step 1: identify meaningful variation and ensure transparent research practice
If we could measure and model everything and do so accurately and precisely, we should notion-
ally be able to predict every outcome based on its specific context. One of the challenges for
6 Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx
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A2) Use theory, meta-analysis & meta-synthesis to derive hypotheses, and combine with knowledge of study system to
identify potential interactions (Z) and confounders (C); explicitly consider Z and C in study design
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Box 2. Mechanistic context dependence and ecological theory

Even if apparent context dependence is discounted (see Figure 3 in main text), understanding and predicting mechanistic context dependence is challenging. We posit
that increased incorporation of interaction effects into ecological theory should increase understanding of mechanistic context dependence by providing (i) predictions
and testable hypotheses that shape study designs, and (ii) a clear structure to contextualise and communicate research findings. The stress gradient hypothesis, which
proposes that facilitation is more common in stressful environments and competition in less stressful environments [38], provides a good example [118]. Instead of hav-
ing to describe that plant–plant relationships are context dependent, the stress gradient hypothesis provides a way to succinctly summarise these relationships in an
accurate and informative way (e.g., Figure IA in Box 1) and highlights the drivers of the observed context dependence.

Interaction effects are central tomany leading hypotheses in ecology, including – but certainly not limited to – the stress gradient hypothesis [38], stochastic niche theory [119],
environmental stress model [120], and resource-enemy release hypothesis [121]. However, in invasion ecology at least, most hypotheses focus on single processes or con-
cepts [103,104,115]. Combined with the widespread observation of context dependence, this suggests that there is somewhat of a mismatch between the complexity ob-
served in nature and the complexity of ecological theory, and that greater incorporation of interaction effects into invasion theory would be helpful. For example, integration of
ideas related toplant resource economics [36] and resource availability hypotheses [103]may help to explain context dependent trait-based relationships often observed along
gradients of resource availability in plant invasion studies [24] (though trait–environment and trait–trait relationships are themselves highly variable and warrant more attention
[122–124]). Along with invasion and functional ecology, other areas of ecology that may particularly benefit from greater theoretical consideration of interaction effects include
predator–prey dynamics, forest management and restoration, biodiversity conservation, plant–soil feedbacks, and ecosystem services – areas where context dependence is
frequently discussed (Figure S2 and Table S2 in the supplemental information online).

Myriad processes, concepts, and ‘discrete’ hypotheses could conceivably be candidates for integration [115], and the subsequent complexity could impede, rather
than facilitate, greater generality [81,125]. One solution proposed for addressing complexity in community ecology is use of four ‘higher-level’ processes to unify multiple
(‘lower-level’) mechanisms and hypotheses [114]. Clustering of 39 invasion hypotheses has similarly enabled five higher-level themes to emerge [103]. Distilling key pro-
cesses through hierarchical approaches should help balance the tension between requisite and overwhelming complexity.

Trends in Ecology & Evolution
OPEN ACCESS
ecologists, and scientists more generally, is determining when variation needs to be understood
or when it can effectively be disregarded and treated as noise (see Outstanding questions).
Measures of model performance that compare explained with unexplained variance (e.g., R2),
or wide confidence intervals relative to effect sizes, can indicate when important covariates
might have been overlooked and when unexplained interaction effects might exist (Figure 3)
[73,79,80]. R2 values reported in ecology papers are generally low (mean of 0.55 across 18
076 papers published between 1930 and 2010, declining over time [81]), which suggests that
performance of many models could improve if additional relationships were considered.

Ecological importance should not be conflated with statistical significance [50,79]. While some
people have argued for more stringent thresholds of statistical significance to reduce Type I
error rates [82] (albeit with consequences for Type II error rates [83]), the merits of specifying
uniform thresholds are questioned [84]. It is increasingly recognised that categorising findings as
significant or non-significant can lead to unsupported claims of ‘no difference’ or ‘no association,’
so there is a strong movement to abandon notions and use of statistical significance altogether,
regardless of whether frequentist, Bayesian, or other approaches are used [48]. Meta-analytic
thinking and focusing on effect sizes and uncertainty (e.g., 95% confidence intervals) can help
guard against Type M and S errors [46,85], reducing the prevalence of apparent context depen-
dence that results from statistical inference (Figure 2) [46,49,50,85]. Prospective and retrospective
design analysis can also increase the reliability of statistical inference by identifying studies at
risk of high Type M or S errors and highlighting where sample sizes need to be greater [46,85].
Increasing sample sizes would also increase ability to detect confounding factors and interaction
effects, especially if the additional samples were positioned strategically to, for example, maximise
variability or extend the range of key variables [86].

Step 2: distinguish mechanistic from apparent context dependence
Minimising or controlling for apparent context dependence during study design, analysis, and
interpretation will enable greater focus on mechanistic context dependence (Figure 3). Careful
Figure 3. Recommended actions to identify mechanistic context dependence that results from interaction effects. Step 2 aims to minimise the three sources of
apparent context dependence. Multiple sources of context dependence can apply. If a source cannot be discounted that does not provide evidence that there is apparent
context dependence (sources ii–iv) or that there is nomechanistic context dependence (source i). Study refers to individual study ormodel. See themain text for supporting references.
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articulation ofmetrics can help avoid apparent context dependence that arises frommethodological
differences, and scalingmethods, such as rarefaction, can help ensure that findings are comparable
where study scales differ [14,87,88]. Temporal scales and sequences are also important to
consider [32].

Use of design analysis and avoiding dichotomous interpretations of statistical significance can help
to overcome apparent context dependence stemming from statistical inference [46,48,49]. We
can also try to predict the conditions under which measurement error will be elevated and adjust
our study designs and approaches accordingly [89,90]. For example, information about survey
conditions, ecosystem characteristics, observer experience, and species traits – all of which can
affect model precision and accuracy [91,92] – can be included in our models [89,90].

Confounding can most effectively be dealt with during study design, though selection of statistical
approaches less sensitive to effects of confounders can help [43,93,94]. Randomisation and
stratification approaches, for example, aim to avoid collinearity by distributing confounders
among experimental treatments or observational strata, effectively deconfounding X and C.
Confounders can be identified using theory, results of previous studies, or expert knowledge
[95]. Different methods are available for identifying different types of confounders [42,96,97]. For
example, the change-in-estimate criterion, which defines confounders as variables that alter the
unadjusted X–Y effect by a certain percentage (e.g. 10%), has proved useful for identifying
influential confounders [98]. Correlation coefficients of |r| > 0.7 indicate situations in which collinearity
severely distortsmodel estimation [94]. As ameasure ofmulticollinearity, variance inflation factor (VIF)
values ≥2.5 are generally considered indicative of a high likelihood of confounding [42]. If potential
confounders can be identified and measured, multivariate statistics can be used to statistically con-
trol for their effects on the X–Y relationship, study design permitting (e.g., see Figure IB in Box 1).
Methods of causal inference, such as structural equationmodelling, provide a way to test postulated
relationships between causal and confounding variables and to disentangle their effects [96].

Greater awareness and pursuit of transparent research practices, and greater support for studies
that replicate other research, should also help minimise apparent context dependence. Although
replication studies can help to distinguish false positives from true positives [47], and although
97% of surveyed ecologists view replication studies as important [99], replication studies cur-
rently only make up 0.023% of the ecological literature [100]. There are clear, workable recom-
mendations for increasing transparency in ecology that can be adopted by funders, publishers,
institutions, and individual scientists (e.g., preregistration of studies and data analysis plans, repli-
cation studies [47,49,79,101]), which should help generalities to emerge.

Step 3: increase understanding of mechanistic context dependence
Many factorsmay interact to causemechanistic context dependence [18,32,67], and understanding
these interaction effects should be a research priority [10]. Hypotheses, theory, meta-analyses, and
experiments should be used to guide which interaction effects are considered in study designs and
analytical models, and to assess the likely validity of trends found (Figure 3) [19,45]. Even when the
factors thought to affect a process have been thoroughly discussed – as is the case for biological
invasions (Box 1) [5,67,102–105] – challenges remain for examining and synthesising across com-
plex systems and moving from pattern detection to prediction (Box 2).

Among other approaches for studying mechanistic context dependence [7,106] (and higher-
order interactions [107,108]), greater development and use of appropriate mechanistic null
models provides a promising way forward [109]. Gradient experiments have also been touted
as offering a paradigm shift for mechanistic modelling and predictive understanding of complex
Trends in Ecology & Evolution, Month 2021, Vol. xx, No. xx 9
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systems [86]. Evidence suggests that moving from traditional replicated experiments to gradient
experiments will increase our ability to detect, predict, and extrapolate interaction effects, espe-
cially when X variables are continuous, responses are non-linear, and sampling effort is limited
[86] (but see [110]). Coordinated distributed experiments (e.g., NutNet [111]) and surveys
(e.g., PlantPopNet [112]) are powerful approaches that help avoid the typical trade-off between
case study precision, realism, and generality [113].

The potential complexity of mechanistic context dependence requires approaches for synthesising
research findings. Hierarchical frameworks can be used to group and structure interaction effects,
enabling trends to emerge even if disparate research approaches are used [103,104,114,115].
Effects of multiple environmental covariates can be condensed and rescaled in ‘biological terms’
by using biological proxies related to key ecological processes, such as using plant abundance
to understand context dependent impacts of climate change on plant–plant interactions [15]. Stud-
ies that examine effects of the number of interacting factors, rather than effects of factor identity,
can reveal general (‘meta’) ecological responses to multiple co-occurring factors [35,116].

When mechanistic context dependence is found, it is important to verify the causal basis of the
interaction [31] and to specify the type of context and form of dependence. We therefore urge
authors, where possible, to move beyond vague statements such as, ‘It is context dependent,’
and instead be explicit; for example, ‘The relationship depends on resource availability, moving
from positive to negative with reduction in resource availability.’ Tying such statements with
ecological theory can provide structure and signal generalities among studies (Box 2).

Concluding remarks
Estimated relationships between variables can vary within and between studies due to ecological
mechanisms and effects of study approaches, designs, andmethodologies. Sources of apparent
context dependence (confounding factors, statistical inference, and methodological differences)
need to be considered (and ideally minimised) for causal X–Y relationships to be revealed.
Mechanistic context dependence resulting from interaction effects is an important source of
variability, essential for understanding and prediction in ecology. To increase understanding of
mechanistic context dependence, we recommend (i) considering study design and model perfor-
mance to assess whether key variables may have been missed, even if statistically ‘significant’
relationships are found; (ii) collectively using theory, experiments, observations, and statistics to
assess whether observed context dependence is likely to be mechanistic or apparent; (iii) using
gradient experiments and fit-for-purposemechanistic null models to rigorously examine interaction ef-
fects; (iv) reducing the probability and impact of Type M and S errors by prioritising in-depth, smaller-
scale studies over shallower, broader ones, and focusing on relationship effect sizes and
uncertainty rather than statistical significance, ensuring that ecological importance is always the
focus; and (v) explicitly considering multiple processes in the development of ecological theory
(Box 2) [103,114,115]. Context dependence is an emerging issue and critical challenge in ecology
that requires immediate attention (see Outstanding questions). By recognising the different ways in
which context dependence can arise, we can better account for context dependence and reduce
the prevalence of unexplained variation in ecology.
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Outstanding questions
How prevalent is apparent context
dependence in ecology, and how
often has it misled development of
ecological theory or understanding?

For applied areas of ecology, including
biological invasions, how often has
failure to account for context
dependence resulted in incorrect or
suboptimal management or policy
decisions?
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